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Abstract- It isimportant to know the information flow between
activeregionsin the brain for the elucidation of theinformation
processing mechanism and for the disease detection in the
human brain. In this paper, at first, we estimate dipoles (via
3-layered concentric spherical model, 2-dipole estimation) from
evoked potentials. Secondary, using derived 2 dipole locations
and moments as loci and quantities of brain activities, we
analyze the infor mation flow between the two time-series of the
1st and the 2nd dipole moments by use of the time-series
analysis method based on the directed transinformation. We
obtain bidirectional information flows between the neuronal
activities localized in 3D space of the brain with respect to
somatosensory evoked potentials measured with 21 electrodes
arranged according to the international 10-20 standard by
dectrical stimulations on the median nerve of theright hand.
Keywords - Dipole Tracing M ethod, Directed Transinfor mation,
3D-display, Information Flow, Evoked Potentials

|. INTRODUCTION

Recently, an information flow between the scdp
potentials measured by multiple dedrodes is reported [1].
However, it was not possble to reved the threedimensional
information flow within the brain, becaise this method is
based on the assumption that the intra-cranial adivities might
be indiredly estimated by the information flow between the
two-dimensional spedfied points on the scdp. Therefore, it
was not sufficient for the ducidation of the information
processng mechanism and the detedion of disease in which
the deeply seaed neuronal adivities are involved.

In the present study, we make dipde locdizaion (via
3-layered concentric sphericd model, 2-dipole estimation) of
evoked paentia's (EPs) measured with multiple dedrodes to
quantitatively estimate neuronal adivities in the brain. Then,
we anayze the bidiredional information flows between
equivalent dipoles representing reuronal adivities in the
spedfied locations of the brain as shematicdly shown in
Fig. 1. Our new method requires high time-resolution data
such as EP, and will give a3D information flow estimate
amost automaticdly, with small number of pre-set
parameters adequately adjusted.

Il. METHODOLOGY

A flow chart of the analysis method is shown in Fig. 2.
First, two equivalent dipoles are estimated from given EPs
[2][3][4], and then an information flow is analyzed between
the two dpades from correlation analysis of time variations
of dipoe moments [5]. In the dipole estimation, we
developed a method to align the time-series of the 1st and the
2nd dpades because in the two-dipole estimation at eath

bidirectional
Information Flow

modeling

time-series of

1st Dipoles time-series of

2ndDipoles

Fig. 1. Information flow between two time-series of 1st and 2nddipoles
by assuming 2 dpolesin 3-layered concentric sphericd model

time, locations of the two dpoles can be exchanged, if we do
not pay attention for kegping the mnsistency in ead series.

A. Dipole Estimation

The 2-dipoe estimation in the 3-layered concentric
sphericd model [2][3] is caried out for all samplesin atime
range of EPs by setting the 3-layered structure, and al
eledrode positions on the 3rd layer of the sphere. The
simplex method [4] is used to solve the inverse problem. The
estimation is carried out six times for every sample from
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Fig. 2. How chart to dbtain the information flow from EPs
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ead initial simplex position randomly chosen, and a result
giving the best estimation acaracy is chosen from the six
estimated ones. The dipdlarity (%) shows the estimation
acarragy as,

— s 2
Dipolarity = 1—% x100
V Prneas

where, Ppes and P,y are the measured and the cdculated
scadp pdentials based on the two-dipole model respedively,
both expressd in n-dimensional column vedors composed
of EPs on the n eledrodes. The dipadlarity ranges from O to
100 % and shows that the estimated dipoles are sufficiently
acarate asthe value gproachesto 10Q

As the result of the estimation, two time-series of the 1st
and the 2nd dpodles are obtained. However, they bemme a
mixed state from a time-series point of view, because the
order of the estimated 1st and 2nd dipdes at ea sample is
indefinite. Therefore, we developed a method to align them.
An explanatory drawingis shown in Fig. 3. D1, D2 show the
1st and the 2nd dipodle locations respedively at a sample time.
M1 and M2 show the mean locations of the 1st and the 2nd
dipoles respedively, averaged for several samples precading
to D1 and D2, with sufficiently high dipdarity. Thus, we
define a citerion for the evaluation of "Proximity" as,

=" )
ri+r2

where, rl and r2 show the distance between D1 and M1, D1
and M2 respedively (or between D2 and M1, D2 and M2).
Here we suppcse, P1 and P2 as the aiterion for D1, D2
respedively. We perform the dipole alignment acording to
the following rule:

If PL>P2; ExchangeD1 andD2. 3)

If PL<P2; No change.
The dignment is caried out by the &ove exchange rule
from the beginning to the end of the time-series with respect
to the 1st and the 2nd dipolesfor all samples.

After the dignment, magnitude of the 1st and the 2nd
dipde moments is cdculated through all samples of the
time-series. It is posdgble to regard the time-series of the
magnitude of the 1st and the 2nd dpole moments derived
through our method as being the time-series of the brain
adiviti es approximated by the two equivalent dipoles.

)

o

Fig. 3. Explanatory drawing for the alignment of dipoles

B. Information Flow

Beforehand, eat mean value of the derived time-series
of the magnitude of the 1st and the 2nd dipole moments is
set to zero respedively. Since then, by use of the time-series
analysis method based on the direded transinformation [5],
the analysis is carried out between these two time-series of
the moments with ead mean is zero.

First, the crrelation function of the two time-series is
cdculated. Next, the signa representation by
two-dimensional AR model (autoregressive model) is carried
out after the selection of the AR model order by FPE (final
prediction error criterion). Then, the linea production model
is constructed from the derived AR coefficients. When the
two time-series of the moments, X and Y, are shown as,

X = Xy ooe X g X X oo Xo = XX XM

4
Y =Y n oo Y Yiar oo Yo = YVY LYY @)
the direded transinformation from X to Y ., is given by
0 0
2
10X, = Yeon XY = log, A B - (5)
2 7'g (a2 +a2 )o
E £ aYXk+m,k+mfi aYYk+m,k+mfi E
and the direded transinformation from Y to Xy.n, iS given
by
0 0
2
1Y = X | XMYUX) = 1k)gz%f" P Bercom %(6)
2 E 4 (a>2<Yk+m,k+rn—i + a>2(><k+m,k+rn—i )E

where ax, axy, ayx and ayy are the linea filter coefficients
(the impulse response wefficients) in the linea production
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Fig. 4. Result of SEPs for inpu of the analysis
(21 electrodes of the international 10-20 standard,
2kHz sampling rate, averaged for 500times, positive up dsplay)



TABLE |
PARAMETERS USED FOR THE ANALYSIS

Name

Value (unit)

analysis time range of SEPs

5-105(ms)

radii for 1st, 2ndand 3d layer

65, 71, 75 (mm)

conductivities for 1st, 2ndand 3d layer

number of sample to average for alignment

0.33,0.0042 0.33 (Sm)
3

threshold of dipolarity for alignment 95 (%)
AR model order 30
21 electrode positions
name | 6(deg) | ¢(deg) [ name | 0(deg) | o (deg)
Fpl 64.75 18.03 F7 64.44 54.02
Fp2 64.75 -18.03 F8 64.44 -54.02
F3 3952 45.00 T3 65.51 90.00
F4 3952 -45.00 T4 6551 -90.00
C3 36.16 90.00 T5 64.44 12598
C4 36.16 -90.00 T6 64.44 -12598
P3 3952 135.00 Fpz 6551 0.00
P4 3952 -13500 Fz 36.16 0.00
o1 64.75 16197 Cz 0.00 0.00
02 64.75 -16197 Pz 36.16 18000
Oz 65.51 18000
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Fig. 5. Result of the dipole moments before the alignment
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Fig. 6. Result of the dipole locations before the alignment,
shown from 20.5 to 22.5 ms,
length of the moment is1 mmper 1 pA - mm.

model. In (5) and (6), I(*—*) shows the mutual information,
and the diredion is regulated automaticaly becaise k point
of time is ealier time-related than k+m point of time. The
direded transinformation is corresponding to the expanded
one of Marko's information [6] in order to oltain the mutual
information between k and k+m point of time for finite
time-series. Therefore, we obtain the bidirediona
information flows by which both direded transinformation
are cdculated for all delays of m. Since this method is
stealy-state analysis expressed by AR mode (stationary
model), the information flow is same for any point of time k.

I1l. RESULTS

We analyzed somatosensory evoked paentials (SEPs)
evoked by the electricd stimulation on the median rerve of
the right hand, as shown in Fig. 4. The parameters used for
the analysis are shown in TABLE I. 6 is the ange from the
positive side of Z axisto XY plane, and ¢ is the one from
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Fig. 7. Result of the dipole moments after the alignment
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Fig. 8. Result of the dipole locaions after the alignment,
shown from 20.5 t0 22.5 ms,
length of the moment is1 mmper 1 pA - mm.
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Fig. 9. Result of the information flow

the positive side of X axis to the positive side of Y axis. The
AR model order is sleded as 30 where FPE takes a
minimal.

The results of the dipole estimation kefore the alignment
are shown in Figs. 5 and 6, and the ones after the alignment
are shown in Figs. 7 and 8 respedively. The result of the
bidiredional information flows is dwown in Fig. 9. The
pasitive side of the @scissa is the direded transinformation
from the time-series of the 1st dipoles to that of the 2nd
dipoles, derived by (5). The negative side of the ascissa is
the direded transinformation from the time-series of the 2nd
dipoes to that of the 1st dipoles, derived by (6). The
horizontal scale is a time expresgon of the delay of min (5)
and (6).

V. DISCUSSON

In comparing Fig. 5 and Fig. 7, the irregularity of
Momentl (time-series of the 1st dipoe moments) and
Moment2 (time-series of the 2nd dipole moments) in Fig. 5
was eliminated in Fig. 7. And with Figs. 6 and 8, the mixed
state of the dipdle locdions in Fig. 6 was solved in Fig. 8.
These results proved the dfediveness of the dignment
procedure we propased.

The result of the information flow in Fig. 9 shows that
the information mainly flows from the time-series of the 1st
dipdes to that of the 2nd dpoles. According to the
neurophysiologicd knowledge of SEPs by the eledrical
stimulation on the median nerve of the hand, it is considered
that the transmisson route of the neurona adivities goes
through the thalamus at about 15 ms latency, and reades the
somatic sensory areaat about 20 ms latency. From Fig. 8, it
ispossble to consider that the time-series of the 1st dipoles

refleds the neuronal adivities of the thalamus, and the
time-series of the 2nd dipoles refleds that of the somatic
sensory area Therefore, The result that the information
mainly flows from the 1st dipoles to the 2nd ones, agrees
with the knowledge that the neuronal adivities move from
the thalamus to the somatic sensory area In addition, the
result indicaes that there might be a slight information flow
from the 2nd dipoles to the 1st ones around the latency of 11
to 15ms (from —11 to =15 msin Fig. 9). This indicates that
there might be a feadbadk from the somatic sensory areato
the thalamus.

V. CONCLUSION

We propcsed an analysis method to reved the
threedimensional bidiredional information flows within the
brain, and applied it for adual experimental data of SEPs. In
the method, the causal relation between the two time-series
of the 1st and the 2nd dipolesis reveded, and its intensity is
obtained as a time-series of information quantity (bit/sec).
We onfirmed that there ae the bidiredional information
flows between them, and mainly the time-series of the 1st
dipdesis a caise and that of the 2nd dipoles is a result, in
case of the SEPs. And it agreed with the neurophysiological
knowledge. Thus, our method can be gplied for the
elucidation of the information processng mechanism and the
disease detedion in the brain, when the original data has a
high time-resolution.
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